

 Navigation

 	
 index

 	Python-Neuroshare documentation

Python Bindings for Neuroshare

The Neuroshare API is a standardized interface to access
electrophysiology data stored in various different file
formats. To do so, it uses format- specific shared libraries.
Refer to the official website

http://neuroshare.org

for more information.

The aim of this library is to provide a high level interface
to the Neuroshare API, i.e. it focuses on API usability more
then being a mere python version of the C API. Thus none of
the original Neuroshare API calls are directly exposed but
the interface consists of python objects that resemble (more
or less) the Neuroshare Entities.

Installation

The compile-time requirements for python-neuroshare are the
‘setuptools’ and the Python development files and a working
C compiler (clang or gcc) and NumPy. For Debian based
distributions, e.g. Ubuntu, this can easily be done with:

$ sudo apt-get install clang python-setuptools \
 python-dev python-numpy

After that, python-neuroshare is installed with the following
command:

$ sudo python setup.py install

	Additional runtime dependencies:

	
	The Neuroshare vendor DLLs for the specific data file(s)!
Please refer to the following section for more information.

Installation of vendor DLLs

Python-neuroshare relies on the vendor specific DLLs to
access data files. Therefore the specific DLLs for each
type of file must be downloaded and installed into one of
the following locations:

/usr/local/lib/neuroshare
/usr/lib/neuroshare
~/.neuroshare

A (possibly incomplete) list of the vendor specific DLLs
can be obtained be obtained from the neuroshare website:

http://neuroshare.sourceforge.net/DLLLinks.shtml

Please note that you need the corresponding DLLs for your
platform (e.g. Linux, 64-bit). If you find yourself in the
situation that there is no DLL for your specific platform
and you are either on a UNIX-like system you can use G-Node’s
very one nswineproxy component to use the Windows 32 bit
DLLs. Please refer to the nswineproxy homepage for more
information:

https://github.com/G-Node/nswineproxy

Quickstart

Opening a file:

import neuroshare as ns
fd = ns.File ("NeuroshareExample.mcd")

Iterate over the entities in the file:

for entity in fd.list_entities():
 print entity.label, entity.entity_type
 ... do something else with entity ...

Access analog signal data:

analog1 = fd.entities[1] #open analog signal entity
data, times, count = analog1.get_data() #load data

data will contain the raw data, times the timepoints of
each datapoint and count how many datapoints in data are
actually continous.

Reporting Bugs & Submitting Patches

Any bugs can and should be filed to the project’s issue
tracker at github:

https://github.com/G-Node/python-neuroshare/issues

Contact & Support

Support and discussion of python-neuroshare related questions
happen in the official G-Node IRC channel #gnode on the
freenode IRC network (cf. http://freenode.net).

User’s Guide

File structure and Entities

Neuroshare provides access to raw data and metadata (such as the sampling rate and creation date) via so called Entities, which groups data of the same type together. The standard defines 4 different entities: Events, Analog signals, Segments and Neural entities (i.e. spiketrains):

[image: _images/entities.png]
Event entities represent specific timepoints with associated data, e.g. trigger events.

Analog signal entities represents continuously sampled, i.e. digitized, analog data. Examples are waveforms recorded via an electrode (microelectrodes, EKG, EEG).

Segment entities contain cutouts of continuously sampled analog signals from one or more sources that are usually short in time. Most prominent example are waveforms of action potentials from one ore more electrodes.

Neural entities are arrays of timestamps when action potentials happened, i.e. arrays of spike times.

Data access

All entities in the file are accessed by their entity index. Each individual entity can have one or more data entries attached to it; these are indetified by a sequential index.

[image: _images/data_schema.png]

API

The basic desgin of the API closely follows the Neuroshare entity model. For all 4 entities there is a class that represents that entity:

	EventEntity for Events

	AnalogEntity for Analog signal entities

	SegmentEntity for Segements

	NeuralEntity for Neural entities

All entity classes derive from a common Entity class that provides metadata common to all entites such as the label (Entity.label()) and how many data entries are contained in the entity (Entity.item_count() or just len(entity)).

Opening a file is simply done by creating a neuroshare.File object with the path to the datafile as constructor argument: fd = neuroshare.File('data.mcd'). Individual enitities can be accessed via the File.get_entity() function or via indexing through the File.entities() property (e.g. File.entities[idx]).

Data is accessed via the get_data() function that all 4 entities provide. Consult the documentation of the individual functions for details.

Code Examples

List entities in a file

How to list all entities in a file called data.mcd:

import neuroshare as ns
fd = ns.File('data.mcd')
for i, entity in enumerate(fd.entities):
 print('%04d: "%s" type: %d' % (i, entity.label, entity.entity_type))

This will produces the following output:

0000: "trig0001 0000 0000 trig0001" type: 1
0001: "elec0001 0000 0000 01" type: 2
0002: "elec0001 0001 0001 02" type: 2
0003: "elec0001 0002 0002 03" type: 2
[...]

Access the raw data inside an analog signal entity

To access the data and timestamps of an analog entity the AnalogEntity.get_data() is used:

analog1 = fd.entities[1] #access the entity 1

#now load all the raw data
data, timestamps, cont_count = analog1.get_data()

The data value is a 3-tuple which contains the raw data and the timestamps for each datapoint.
It is also possible to retrieve a subset of the available data:

data = analog1.get_data(20, 10) #fetch 10 elements starting at index 20
print("%d" % data[0].shape)
-> 10
print (data[0])
->
[8.50000000e-05 7.00000000e-05 2.16666667e-05 3.16666667e-05
3.66666667e-05 0.00000000e+00 -5.50000000e-05 -9.33333333e-05
-6.66666667e-05 3.33333333e-06]

Metadata

Metadata is exposed as python properties of the individual entities:

print(analog1.units)
-> 'V'
print(analog1.sample_rate)
-> 25000.0

API Reference

File

Entity

Event Entity

Analog Entity

Neural Entity

Segment Entity

Indices and tables

	Index

	Module Index

	Search Page

(c) 2013 Christian Kellner and the German Neuroinformatics Node

[image: _images/gnode_logo.png]
 [http://www.g-node.org]

 Copyright 2013, Christian Kellner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Python-Neuroshare documentation

Index

 Copyright 2013, Christian Kellner.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/up.png

_static/comment.png

_static/gnode_logo.png
~-:3:"..G—Node

_static/data_schema.png
Data File
with N entities

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/up-pressed.png

_images/entities.png
File Information Event Entities Analog Entities Segment Entities Neural Entities

Neuroshare API - Entities neuroshare

_static/minus.png

_static/down-pressed.png

_images/gnode_logo.png
~-:3:"..G—Node

_static/entities.png
File Information Event Entities Analog Entities Segment Entities Neural Entities

Neuroshare API - Entities neuroshare

_images/data_schema.png
Data File
with N entities

search.html

 Navigation

 		
 index

 		Python-Neuroshare documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Christian Kellner.
 Created using Sphinx 1.2.2.

_static/down.png

_static/ajax-loader.gif

