
Python-Neuroshare Documentation
Release

Christian Kellner

June 05, 2014

Contents

1 Installation 3
1.1 Installation of vendor DLLs . 3

2 Quickstart 5

3 Reporting Bugs & Submitting Patches 7

4 Contact & Support 9

5 User’s Guide 11
5.1 File structure and Entities . 11
5.2 Data access . 11
5.3 API . 12
5.4 Code Examples . 12

6 API Reference 15
6.1 File . 15
6.2 Entity . 15
6.3 Event Entity . 15
6.4 Analog Entity . 15
6.5 Neural Entity . 15
6.6 Segment Entity . 15

7 Indices and tables 17

i

ii

Python-Neuroshare Documentation, Release

The Neuroshare API is a standardized interface to access electrophysiology data stored in various different file formats.
To do so, it uses format- specific shared libraries. Refer to the official website

http://neuroshare.org

for more information.

The aim of this library is to provide a high level interface to the Neuroshare API, i.e. it focuses on API usability more
then being a mere python version of the C API. Thus none of the original Neuroshare API calls are directly exposed
but the interface consists of python objects that resemble (more or less) the Neuroshare Entities.

Contents 1

http://neuroshare.org

Python-Neuroshare Documentation, Release

2 Contents

CHAPTER 1

Installation

The compile-time requirements for python-neuroshare are the ‘setuptools’ and the Python development files and a
working C compiler (clang or gcc) and NumPy. For Debian based distributions, e.g. Ubuntu, this can easily be done
with:

$ sudo apt-get install clang python-setuptools \
python-dev python-numpy

After that, python-neuroshare is installed with the following command:

$ sudo python setup.py install

Additional runtime dependencies:

• The Neuroshare vendor DLLs for the specific data file(s)! Please refer to the following section for more
information.

1.1 Installation of vendor DLLs

Python-neuroshare relies on the vendor specific DLLs to access data files. Therefore the specific DLLs for each type
of file must be downloaded and installed into one of the following locations:

/usr/local/lib/neuroshare
/usr/lib/neuroshare
~/.neuroshare

A (possibly incomplete) list of the vendor specific DLLs can be obtained be obtained from the neuroshare website:

http://neuroshare.sourceforge.net/DLLLinks.shtml

Please note that you need the corresponding DLLs for your platform (e.g. Linux, 64-bit). If you find yourself in the
situation that there is no DLL for your specific platform and you are either on a UNIX-like system you can use G-
Node’s very one nswineproxy component to use the Windows 32 bit DLLs. Please refer to the nswineproxy homepage
for more information:

https://github.com/G-Node/nswineproxy

3

http://neuroshare.sourceforge.net/DLLLinks.shtml
https://github.com/G-Node/nswineproxy

Python-Neuroshare Documentation, Release

4 Chapter 1. Installation

CHAPTER 2

Quickstart

Opening a file:

import neuroshare as ns
fd = ns.File ("NeuroshareExample.mcd")

Iterate over the entities in the file:

for entity in fd.list_entities():
print entity.label, entity.entity_type
... do something else with entity ...

Access analog signal data:

analog1 = fd.entities[1] #open analog signal entity
data, times, count = analog1.get_data() #load data

data will contain the raw data, times the timepoints of each datapoint and count how many datapoints in data are
actually continous.

5

Python-Neuroshare Documentation, Release

6 Chapter 2. Quickstart

CHAPTER 3

Reporting Bugs & Submitting Patches

Any bugs can and should be filed to the project’s issue tracker at github:

https://github.com/G-Node/python-neuroshare/issues

7

https://github.com/G-Node/python-neuroshare/issues

Python-Neuroshare Documentation, Release

8 Chapter 3. Reporting Bugs & Submitting Patches

CHAPTER 4

Contact & Support

Support and discussion of python-neuroshare related questions happen in the official G-Node IRC channel #gnode on
the freenode IRC network (cf. http://freenode.net).

9

http://freenode.net

Python-Neuroshare Documentation, Release

10 Chapter 4. Contact & Support

CHAPTER 5

User’s Guide

5.1 File structure and Entities

Neuroshare provides access to raw data and metadata (such as the sampling rate and creation date) via so called
Entities, which groups data of the same type together. The standard defines 4 different entities: Events, Analog
signals, Segments and Neural entities (i.e. spiketrains):

Event entities represent specific timepoints with associated data, e.g. trigger events.

Analog signal entities represents continuously sampled, i.e. digitized, analog data. Examples are waveforms recorded
via an electrode (microelectrodes, EKG, EEG).

Segment entities contain cutouts of continuously sampled analog signals from one or more sources that are usually
short in time. Most prominent example are waveforms of action potentials from one ore more electrodes.

Neural entities are arrays of timestamps when action potentials happened, i.e. arrays of spike times.

5.2 Data access

All entities in the file are accessed by their entity index. Each individual entity can have one or more data entries
attached to it; these are indetified by a sequential index.

11

Python-Neuroshare Documentation, Release

5.3 API

The basic desgin of the API closely follows the Neuroshare entity model. For all 4 entities there is a class that
represents that entity:

• EventEntity for Events

• AnalogEntity for Analog signal entities

• SegmentEntity for Segements

• NeuralEntity for Neural entities

All entity classes derive from a common Entity class that provides metadata common to all entites such as the
label (Entity.label()) and how many data entries are contained in the entity (Entity.item_count() or
just len(entity)).

Opening a file is simply done by creating a neuroshare.File object with the path to the datafile as
constructor argument: fd = neuroshare.File(’data.mcd’). Individual enitities can be accessed
via the File.get_entity() function or via indexing through the File.entities() property (e.g.
File.entities[idx]).

Data is accessed via the get_data() function that all 4 entities provide. Consult the documentation of the individual
functions for details.

5.4 Code Examples

5.4.1 List entities in a file

How to list all entities in a file called data.mcd:

import neuroshare as ns
fd = ns.File(’data.mcd’)
for i, entity in enumerate(fd.entities):

print(’%04d: "%s" type: %d’ % (i, entity.label, entity.entity_type))

This will produces the following output:

0000: "trig0001 0000 0000 trig0001" type: 1
0001: "elec0001 0000 0000 01" type: 2
0002: "elec0001 0001 0001 02" type: 2
0003: "elec0001 0002 0002 03" type: 2
[...]

12 Chapter 5. User’s Guide

Python-Neuroshare Documentation, Release

5.4.2 Access the raw data inside an analog signal entity

To access the data and timestamps of an analog entity the AnalogEntity.get_data() is used:

analog1 = fd.entities[1] #access the entity 1

#now load all the raw data
data, timestamps, cont_count = analog1.get_data()

The data value is a 3-tuple which contains the raw data and the timestamps for each datapoint. It is also possible
to retrieve a subset of the available data:

data = analog1.get_data(20, 10) #fetch 10 elements starting at index 20
print("%d" % data[0].shape)
-> 10
print (data[0])
->
[8.50000000e-05 7.00000000e-05 2.16666667e-05 3.16666667e-05
3.66666667e-05 0.00000000e+00 -5.50000000e-05 -9.33333333e-05
-6.66666667e-05 3.33333333e-06]

5.4.3 Metadata

Metadata is exposed as python properties of the individual entities:

print(analog1.units)
-> ’V’
print(analog1.sample_rate)
-> 25000.0

5.4. Code Examples 13

Python-Neuroshare Documentation, Release

14 Chapter 5. User’s Guide

CHAPTER 6

API Reference

6.1 File

6.2 Entity

6.3 Event Entity

6.4 Analog Entity

6.5 Neural Entity

6.6 Segment Entity

15

Python-Neuroshare Documentation, Release

16 Chapter 6. API Reference

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

(c) 2013 Christian Kellner and the German Neuroinformatics Node

17

http://www.g-node.org

	Installation
	Installation of vendor DLLs

	Quickstart
	Reporting Bugs & Submitting Patches
	Contact & Support
	User's Guide
	File structure and Entities
	Data access
	API
	Code Examples

	API Reference
	File
	Entity
	Event Entity
	Analog Entity
	Neural Entity
	Segment Entity

	Indices and tables

